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Solution of the static pair annihilation process
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The pair annihilation of identical static particles initially distributed at random on a one-dimensional lattice
is studied for exponential and power-law interactions. A shielding approximation is introduced to solve the
hierarchy of equations describing the process, and the density and pair correlation of surviving particles are
calculated. The analytical and numerical results of this approximation are in good agreement with Monte Carlo
simulations, showing that the approximation correctly describes the long-time regime in all cases.
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I. INTRODUCTION

In the static annihilation model, a set ofA particles are
randomly distributed on a lattice and removed by a fus
reactionA1A→0, with isotropic reaction ratew(r ), for any
pair of particles separated by distancer . Extensive studies
~see@1# and references therein! have shown that the proces
is dominated at timet by fluctuations of the number of par
ticles in a volume of size roughly determined by the react
radius@2# R(t) given bytw„R(t)…'1. The main observable
are the density of surviving particlesr(t) and the two par-
ticle correlation functiong(r ,t). In the one-dimensiona
case, it appears that the density decays asr(t)5C/R(t),
while the correlation ultimately scales asg(r ,t)
5g`„z5r /R(t)….

In an earlier paper@3#, we gave analytical expressions fo
the constantC and the asymptotic form ofg`(z) for a tun-
neling law interactionw(r )5w0exp(2r/r0) such as might be
found for annihilation of localized triplet electronic states
aromatic molecules in rigid solution@4,5#. We introduced a
staggered annihilation model, in which the reaction occ
by stages corresponding to pairs of particles separated
1,2,3, . . . ,N lattice units. This is intuitively justified for
small r 0 compared to the lattice spacing and leads to a d
sity decaying asymptotically ase2g/2N, whereg is Euler’s
constant. We argued that the true static annihilation mode
recovered by the identificationN5R(t), giving C5e2g/2,
in agreement with the density and pair correlation in Mo
Carlo simulations of the true static annihilation process.

Now this implies thatC andg`(z) might be independen
of the form ofw(r ), insofar as the static and the stagger
static processes may be identified. Our purpose here i
investigate this. We therefore solve the static annihilat
model without the staggered interaction approximation,
the spirit of @7#, by using a Kirkwood-like uncoupling ap
proximation to close the hierarchy of equations of the sta
model. We then recover all the analytical results sugges
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by the staggered reaction model for the exponential ca
However, we find that for power-law interaction
w(r )5w0 /r

a, a.1, the densityr(t) behaves asymptoti
cally like Ca /R(t), whereR(t)5t1/a and the constantCa

depends ona. The asymptotic pair correlation also depen
ona. Both quantities tend to their values for the exponen
reaction asa tends to infinity. The results are again in ve
good agreement with the Monte Carlo simulation of the e
act process. Section II below is devoted to the hierarchy
equations defining the static annihilation process on a o
dimensional lattice, using a shielding approximation, wh
is to assume that two particles do not react while there
still other particles between them. We expect this to be
accurate approximation for reaction rates decaying su
ciently steeply withr and especially for dilute systems. W
have performed Monte Carlo simulations to check this a
conclude that the approximation correctly produces
asymptotic form of the decay for all interactions studi
here. This approximation closes the hierarchy of equati
for the density and the correlation function, opening the w
to an exact solution of the model in the asymptotic lim
Section III describes the analytical solution for the expon
tial interaction, recovering our earlier results@3# in a much
more direct way. Finally, Sec. IV applies the same method
the power-law interaction. Numerical results are given
2<a<6. Although the constantCa is close to its value for
the exponential interactione2g/2, it shows some dependenc
on a. The departure from the exponential case is more p
nounced for the pair correlation, which indicates that t
self-ordering tendency decreases witha. The correctness o
the results is checked by a comparison with Monte Ca
simulations of the true static annihilation model.

II. HIERARCHICAL EQUATIONS
WITHIN THE SHIELDING APPROXIMATION

The well-known hierarchy@6# used to describe the dy
namics of annihilation begins with the evolution of the de
sity
6661 © 1997 The American Physical Society
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2
d

dt
r~ t !52(

r51

`

w~r !P2~r ,t !, ~1!

whereP2(r ,t) is the probability~concentration per pair o
lattice sites! of pairs of particlesA1A2 with separationr at
time t. The separation is measured in lattice spacings and
sum runs over half the lattice, the factor 2 arising from sy
metry. The evolution ofP2(r ,t) is governed by two kinds o
events: the pairA1A2 may react or one of its members ma
react with a third particleA3. WhenA3 is outside the interva
@A1 ,A2#, the shielding approximation implies that only th
nearer member of the pair reacts withA3. Thus

2
d

dt
P2~r ,t !5w~r !P2~r ,t !12(

r 8,r

w~r 8!P3~r 8,r2r 8,t !

12(
r 8

w~r 8!P3~r 8,r ,t !, ~2!

whereP3(r 1 ,r 2 ,t) is the probability of finding three succes
sive particles A1A2A3 with separationsA1A25r 1 and
A2A35r 2 and we have used the symmetryP3(r 1 ,r 2 ,t)
5P3(r 2 ,r 1 ,t). The generalization of these equations
straightforward. LetPn($r i%,t) be the probability forn suc-
cessive particles A1A2•••An with separations
AiAi115r i , 1< i<n21. Then

2
d

dt
Pn~$r i%,t !

5 (
j51

n21

w~r j !Pn~$r i%,t !12(
j51

n21

(
r j 8,r j

w~r j 8!Pn11

3~r 1 , . . . ,r j21 ,r j 8,r j2r j 8,r j11 , . . . ,r n21 ,t !

12(
r 8

w~r 8!Pn11~$r i%,r 8,t !. ~3!

The right-hand side of Eq.~3! describes in order the follow
ing: annihilationsAj2Aj11, reactions ofAj or Aj11 with
someAj 8 lying between them, and annihilation ofA1 or An
with particles outside the interval@A1 ,An#. It can be shown
that Eq.~3! is solved by a factorized probability

Pn~$r i%,t !5r~ t !)
j51

n21

g~r j ,t !, n>2 ~4!

as long as the density and the functiong(r ,t) satisfy Eqs.~2!
and ~3!. In terms of these variables, Eqs.~2! and ~3! can be
expressed as

2
d

dt
r~ t !52r~ t !(

r
w~r !g~r ,t !, ~5!

2
d

dt
g~r ,t !5w~r !g~r ,t !12(

r 8,r

w~r 8!g~r 8,t !g~r2r 8,t !.

~6!
he
-

The initial conditions arer(t50)5r0 and g(r ,t50)5r0
because for an initially random distributionP2(r ,t50)
5r0g(r ,t50)5r0

2. Thus, from Eq.~5!,

r~ t !5r0expS 22(
r
w~r !E

0

t

g~r ,t8!dt8D . ~7!

On the other hand, the pair correlation functiong(r ,t),
normalized tog(r5`,t)51 for all times, is defined via
P2(r ,t)5r2(t)g(r ,t) or

g~r ,t !5g~r ,t !/r~ t !, ~8!

so that we can calculate the density and the pair correlatio
we can solve Eq.~6! for g(r ,t). It can be shown by induction
thatg(r ,t) is of the form

g~r ,t !5A~r !e2w~r !t1(
i51

I ~r !

A~r ,i !e2Li ~w!t, ~9!

where the summation is over all integer partitions ofr
and the coefficientsA(r ) and A(r ,i ), which are step by
step computable, are functions ofr0 andw(r ). For example,
for r54, there are four partitions@ I (r )54#, namely,
(3,1),(2,2),(2,1,1),(1,1,1,1), corresponding toi51, . . . ,4.
The corresponding values ofLi(w) are L1(w)5w(1)
1w(3), L2(w)5w(2)1w(2)52w(2), L3(w)5w(2)
12w(1), and L4(w)54w(1). The general form is
Li(w)5( jw( j ), where j runs over thei th partition. We
mention form~9! because it determines the beginning of t
annihilation process, but our interest below is the long-ti
behavior, where we shall look for a scaling form ofg(r ,t):

g~r ,t !5h~z!
1

R~ t !
with z5

r

R~ t !
, ~10!

where R(t) is the ‘‘reaction radius’’ defined by
tw„R(t)…51. Physically, in cases with steep radial decay
w(r ), annihilation processes withr greater thanR(t) at a
given time are unlikely. Our aim in Sec. III is to findh(z), if
it exists, thus determining the asymptotic behavior of t
density and the correlation function, since from Eq.~8!,

g~r→`,t !515
g~r5`,t !

r~ t !
5

h~`!

R~ t !r~ t !
.

Thus

lim
t5`

r~ t !5
h~`!

R~ t !
~11!

and

g~r ,t !5
g~r ,t !

r~ t !
.

h~z!R~ t !

R~ t !h~`!
5

h~z!

h~`!
,

so

lim
t5`

g~r ,t !5g`~z!5
h~z!

h~`!
. ~12!
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55 6663SOLUTION OF THE STATIC PAIR ANNIHILATION PROCESS
The determination ofh(z), which appears to be rat
dependent, is deferred to Sec. III, but we prepare
the derivation by examining here a general constraint
plied by Eq.~6! and the initial conditions. On introducing th
generating functionsG(x,t)5( rx

rg(r ,t) and Gw(x,t)
5( rx

rw(r )g(r ,t), Eq. ~6! is equivalent to

2d

dt
G~x,t !5@112G~x,t !#Gw~x,t !, ~13!

which can be integrated to yield

112G~x,t !5@112G~x,0!#expS 22E
0

t

Gw~x,t8!dt8D . ~14!

From the initial conditions, 112G(x,0)5112r0x/(12x),
which can be written as exp(2(rx

rvr), with v r5$12(1
22r0)

r%/2r . Thus Eq.~14! becomes

112G~x,t !5expF2(
r
xr S v r2w~r !E

0

t

g~r ,t8!dt8D G , ~15!

which will be used below.
We should like to conclude this section by justifying th

shielding approximation on the basis of numerical expe
ments involving several hundred thousand events per
studied. Simulations of theA1A→0 process were per
formed forA particles on a line, as described in detail in@3#.
Both the exact and the shielded interaction were simula
Slight differences in the density and the pair correlation
the exact and the shielded interactions quickly drop be
the level of statistical significance as the reaction rad
grows. Figure 1 compares the density and the correla
functions for the exact and the shielded dynamics with
dipolar interactionw(r )51/r 6 ~we setw051 throughout the
following!.

III. STATIC ANNIHILATION
BY A TUNNELING INTERACTION

Setting unimportant constants to unity, we consider
casew(r )5e2r , for whichR(t)5 ln(t) and look for the scal-
ing form of solution of Eq.~6!,

g~r ,t !5
h~z!

ln~ t !
, z5

r

ln~ t !
. ~16!

On replacing the summation overr 8 in Eq. ~6! and changing
variables toz85r 8/ ln(t), we have

d

dz
@zh~z!#5t lntFh~z!

tz
12E

0

z

dz8
h~z8!h~z2z8!

tz8
G . ~17!

Thus, ast goes to infinity,

h~z!50 for 0<z<1 ~18!

andh(z) for largerz is defined piecemeal on intervals of un
length, the effective range of integration in Eq.~17! being
@1,z21# instead of@0,z#. The integral does not contribut
for 1,z<2 and
r
-

i-
se

d.
r
w
s
n
a

e

h~z!5
h~1!

z
for 1,z<2, ~19!

where the constant of integrationh(1) will be determined
later. For 2<z<3, retaining the leading term in Eq.~17!
yields

d

dz
@zh~z!#52h2~1!t lntE

1

z21 dz8t2z8

z8~z2z8!
;
2h2~1!

~z21!
~20!

and

h~z!5
h~1!

z
@112h~1!ln~z21!# for 2<z<3, ~21!

where the constant of integration is fixed so thath(z) is
continuous atz52. The solution for largerz involves com-
plicated integrals and it is simpler to use the constraints~15!
to find h(1) andh(`). Relation ~18! means that for large
t, g(r ,t)50 for r<R(t), in line with the phenomenologica
interpretation ofR(t) as the minimal distance between su
viving particles. But this implies that 112G(x,t)
511O(xR(t)) and thus all terms inxr for 1<r<R(t) on the
right-hand side of Eq.~15! must vanish, i.e.,

w~r !E
0

t

g~r ,t8!dt85v r for r<R~ t !, ~22!

which in turn leads to

FIG. 1. Comparison of~a! the densities and~b! the asymptotic
pair correlation in theA1A→0 reaction withw(r )51/r 6, com-
puted by the Monte Carlo simulation of the exact process~curves!
and the shielding approximation~diamonds!.
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2(
r51

R~ t !

w~r !E
0

t

g~r ,t8!dt85(
r51

R~ t !
12~122r0!

r

r

;g1 ln@2r0R~ t !# ~23!

for large t. In this equation,g50.577 . . . is Euler’s con-
stant. Inserting Eq.~23! into the density, we obtain

r~ t !5
e2g

2 ln~ t !
rw~ t !, ~24!

with

rw~ t !5expS 22 (
r.R~ t !

w~r !E
0

t

g~r ,t8!dt8D . ~25!

In expression~25!, g(r ,t8)5r(t8)g(r ,t8);r(t8) under
the reasonable assumption that outside the reaction radiu
correlation is of order 1, as in the initial state. Sin
( r.R(t)w(r )51/t, we obtain

rw~ t !;expS 22/tE
0

t

r~ t8!dt8D;1

and the final result is

lim
t→`

r~ t !5
e2g

2 ln~ t !
, ~26!

which by comparison with Eq.~11! gives directly h(`)
5e2g/2.

In order to determineh(1), we again turn to Eq.~15!,
which yields

g~r ,t !5v r2w~r !E
0

t

g~r ,t8!dt8 for R~ t !,r<2R~ t !.

For larger ,g reduces tog(r ,t)5wr.1/2r , i.e., h(z)51/2z
for 1,z<2, in agreement with Eq.~19!, whenceh(1)
51/2. On collecting these results and using Eq.~12! to com-
puteg`(z), we find from Eqs.~18!, ~19!, and~21! that

g`~z!55
0, 0<z<1

eg

z
, 1,z<2

eg

z
@11 ln~z21!#, 2<z<3.

~27!

Results ~26! and ~27! are in complete agreement wit
those obtained in@3# by mapping the static annihilation prob
lem onto a staggered annihilation model. We know from t
previous work that these expressions agree with Monte C
simulations and can be used over a wide range of time.

IV. STATIC ANNIHILATION
WITH A POWER-LAW INTERACTION

Consider now the casew(r )5r2a. Let us look for solu-
tions of Eq.~6! of the scaling form

g~r ,t !5h~z!t21/a, z5rt21/a, ~28!
the

s
lo

in agreement with Eq.~10! and our definitionR(t)5t1/a. On
inserting expression~28! into Eq. ~6! and dividing through-
out by t212(1/a), one finds the time-independent equation f
h(z),

d

dz
@zh~z!#5

ah~z!

za 12aE
0

z dx

xa h~x!h~z2x!. ~29!

The solution can be written as

h~z!5
f~z!

z
expS 2

1

zaD , ~30!

wheref(z) obeys the simpler equation

d

dz
f~z!52ae1/z

aE
0

z dx

xa h~x!h~z2x!. ~31!

An analytical solution of Eqs.~30! and ~31! has not been
found, but a numerical solution can be computed with
help of the following observations. First, it will appear th
f(z) is of order 1 in z for z;0, and there is a facto
e21/za

in Eq. ~30!, so one can use the approximation

h~z!50 for 0<z<z0 , ~32!

wherez0 depends ona. In practicez05(0.1)1/a appears to
be a good choice since Eq.~32! is then fulfilled to within
1024. The effective reaction radius, which gives the avera
pair separation, is thusz0t

1/a. With this approximation, the
effective limits of the integral on the right-hand side of E
~31! arez0<z<z2z0. Hence

f~z!5f~z0!, h~z!5
f~z0!

z
e21/za

for z0<z<2z0 .

~33!

Integrating Eq.~31! we have

f~z!5f~z0!12aE
z0

z

dx e1/x
aE

z0

x2z0 dy

ya h~y!h~x2y!. ~34!

Thusf(z) in the range 2z0<z<3z0 is determined byh(z)
in the rangez0<z<2z0, as implied by Eq.~33!. This proce-
dure may be iterated to yieldh(z) andf(z) for anyz, once
f(z0) is known.

In order to findf(z0), we observe that the large-z behav-
ior of f(z), given by Eq.~31!, is f(z);zb, whereb is the
constant defined by

2aE
0

`

h~z!
dz

za 5b. ~35!

On physical grounds, we expect thatb51 in such a way that
h(z) reaches a finite valueh(`). This is indeed implied by
constraint~15!, which reads

w~r !E
0

t

g~r ,t8!dt85v r;
1

2r
for r,z0t

1/a, ~36!

where we have used relation~32! as in Sec. III. On writing
Eq. ~36! in the long-time limit as
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2rw~r !E
0

`

g~r ,t !dt51,

then using Eq.~28!, and changing the variable fromt to
z5rt21/a at fixed r , this expression readsb51. It is this
constraint that determinesf(z0). This is done numerically
and we further know that asa tends to`, we must have
f(z0)51/2 in order for Eqs.~33! and ~19! to coincide.

In practice, we proceed as follows for givena andz0. We
choose a trial value off(z0);1/2, constructf(z) by itera-
tion up to somez5Nz0 in the asymptotic regime (N ranges
from 8 to 10 fora ranging from 6 to 2!, and adjustf(z0)
until b;1 @f(z0) appears to vary weakly, from 0.5 to 0.4
asa varies from 6 to 2#. Finally, we check the stability of the
resultingh(z) asz0 is reduced andN is increased at constan
Nz05z.

We have investigated the physically interesting inte
values ofa, 2<a<6, with the resultsh(`)50.195, 0.222,
0.242, 0.249, and 0.254. We recall from Eq.~11! that
r(t);h(`)/t1/a. Figure 2 illustrates this by comparing th
product r(t)t1/a from simulations with these predicted a
ymptotes. Figure 3 shows satisfactory agreement betw
the simulated and calculated correlation functions~in scaled
units! for a56. The agreement fora52 is less satisfactory
as is the convergence of the analytical and simulated va
of the productr(t)t1/a in Fig. 2 because of numerical diffi
culties in both the estimation and the simulations. Howev
we note that the reaction front and the peak following

FIG. 2. Convergence of the density of surviving particles
wards the asymptotic form~11!: The productR(t)r(t) in Monte
Carlo simulations is compared with the asymptotesCa ~see the text!
for a56, 4, and 2 from top to bottom.
M

.

r

en

es

r,
,

indicating local ordering of surviving particles in the rea
tions with exponential@3# or 1/r 6 coupling, are, as expected
less well defined or absent in the casea52.

V. CONCLUSION

Through Monte Carlo experiments we show that t
shielding approximation is accurately fulfilled by the annih
lation process. This approximation then closes the hierar
cal equations, as in many other cases, like the trapping r
tion A1T→T with immobile reactants and traps@8# or
ballistic annihilation in a one-dimensional fluid@9#. In our
case, the long-time solution of the resulting evolution eq
tions has a scaling form involving the reaction radius in t
expected way@10# and, as is well known, does not follow th
mean-field regime. To the contrary, the evolution of the s
viving population toward an ordered sate is particualrly str
ing for the exponential interaction, for which the correlatio
function can be predicted analytically. The local ordering
noticeable for multipolar interactions, especiallya56, but
decreases witha, practically disappearing fora52.

In conclusion, we would mention that this approach c
be applied to theA1B→0 reaction, where it justifies the
results obtained earlier with a staggered interaction mo
@11#. In higher dimensions, the shielding approximation m
be replaced by a Kirkwood superposition approximation.
shown in @12#, this leads to a closed system that can
solved numerically and appears to be in good agreement
the data at long times. The introduction of our techniqu
especially the scaling forms, might lead to a more accurat
even an analytical solution for the exponential case.

- FIG. 3. Comparison of the asymptotic scaling form of the p
correlation from the Monte Carlo simulation and from the shieldi
approximation~smooth line! for a56 ~top! anda52 ~bottom!.
.
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