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Solution of the static pair annihilation process
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The pair annihilation of identical static particles initially distributed at random on a one-dimensional lattice
is studied for exponential and power-law interactions. A shielding approximation is introduced to solve the
hierarchy of equations describing the process, and the density and pair correlation of surviving particles are
calculated. The analytical and numerical results of this approximation are in good agreement with Monte Carlo
simulations, showing that the approximation correctly describes the long-time regime in all cases.
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[. INTRODUCTION by the staggered reaction model for the exponential case.
However, we find that for power-law interactions
In the static annihilation model, a set Af particles are  w(r)=wgy/r%, a>1, the densityp(t) behaves asymptoti-
randomly distributed on a lattice and removed by a fusioncally like C,/R(t), whereR(t)=t"* and the constant,
reactionA+A— 0, with isotropic reaction rate/(r), for any  depends orx. The asymptotic pair correlation also depends
pair of particles separated by distanceExtensive studies on «. Both quantities tend to their values for the exponential
(see[1] and references thergihave shown that the process reaction asy tends to infinity. The results are again in very
is dominated at timé¢ by fluctuations of the number of par- good agreement with the Monte Carlo simulation of the ex-
ticles in a volume of size roughly determined by the reactionact process. Section Il below is devoted to the hierarchy of
radius[2] R(t) given bytw(R(t))~1. The main observables equations defining the static annihilation process on a one-
are the density of surviving particlggt) and the two par- dimensional lattice, using a shielding approximation, which
ticle correlation functiong(r,t). In the one-dimensional is to assume that two particles do not react while there are
case, it appears that the density decayspé3=C/R(t), still other particles between them. We expect this to be an
while the correlation ultimately scales agy(r,t)  accurate approximation for reaction rates decaying suffi-
=0.(z=r/R(1)). ciently steeply withr and especially for dilute systems. We
In an earlier pap€i3], we gave analytical expressions for have performed Monte Carlo simulations to check this and
the constanC and the asymptotic form af..(z) for a tun-  conclude that the approximation correctly produces the
neling law interactiorw(r)=wgexp(—r/rg) such as might be asymptotic form of the decay for all interactions studied
found for annihilation of localized triplet electronic states of here. This approximation closes the hierarchy of equations
aromatic molecules in rigid solutiof#,5]. We introduced a for the density and the correlation function, opening the way
staggered annihilation model, in which the reaction occurgo an exact solution of the model in the asymptotic limit.
by stages corresponding to pairs of particles separated Kyection Ill describes the analytical solution for the exponen-
1,2,3...,N lattice units. This is intuitively justified for tial interaction, recovering our earlier resul¥| in a much
smallry compared to the lattice spacing and leads to a denmore direct way. Finally, Sec. IV applies the same method to
sity decaying asymptotically as ?/2N, wherey is Euler's  the power-law interaction. Numerical results are given for
constant. We argued that the true static annihilation model ig< «<6. Although the constar€, is close to its value for
recovered by the identificatioN=R(t), giving C=e" /2,  the exponential interactiog */2, it shows some dependence
in agreement with the density and pair correlation in Montegn o, The departure from the exponential case is more pro-
Carlo simulations of the true static annihilation process.  nounced for the pair correlation, which indicates that the
Now this implies thaC andg..(z) might be independent - se|f-ordering tendency decreases withThe correctness of
of the form ofw(r), insofar as the static and the staggeredihe results is checked by a comparison with Monte Carlo

static processes may be identified. Our purpose here is tgmuylations of the true static annihilation model.
investigate this. We therefore solve the static annihilation

model without the staggered interaction approximation, in
the §pirit_ of[7], by using a Kirkwood-like u_ncoupling ap- Il. HIERARCHICAL EQUATIONS
proximation to close the hierarchy of e.quatlons of the static WITHIN THE SHIELDING APPROXIMATION
model. We then recover all the analytical results suggested
The well-known hierarchy 6] used to describe the dy-
namics of annihilation begins with the evolution of the den-
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d * The initial conditions arep(t=0)=pqy and y(r,t=0)=pq
—ap(t)ZZE w(r)Py(r,t), (1) because for an initially random distributioR,(r,t=0)
r=1 =poy(r,t=0)=p2. Thus, from Eq(5),

where P,(r,t) is the probability(concentration per pair of t
lattice site$ of pairs of particlesA;A, with separatiorr at P(t)=PoeXF( —22 W(f)jo V(r,t')dt'>- ()
timet. The separation is measured in lattice spacings and the
sum runs over half the lattice, the factor 2 arising from sym- o the other hand, the pair correlation functigr,t),
metry. The evolution oP,(r,t) is governed by two kinds of  ,5rmalized tog(r=c,t)=1 for all times, is defined via
events: the paiA;A, may react or one of its members may P,(r,t)=p2(t)g(r,t) or
react with a third particlé\;. WhenAgj is outside the interval
[A1,A,], the shielding approximation implies that only the g(r,t)=y(r,t)/p(t), (8)
nearer member of the pair reacts wah. Thus
so that we can calculate the density and the pair correlation if
we can solve Eq6) for y(r,t). It can be shown by induction

d
~ i P2(nO=w(r)Py(r,t)+2 > W(r)Pa(r',r=r’t) that y(r,t) is of the form
r’<r

I(r)
+2 W(r')Pa(r’,r,t), ) «y(r,t)=A(r)e*W(”‘+Z,1 A(r,iye AWt 9

where the summation is over all integer partitions rof
and the coefficientA(r) and A(r,i), which are step by
step computable, are functions @f andw(r). For example,
for r=4, there are four partitiondI(r)=4], namely,
(3,1),(2,2),(2,1,1,(1,1,1,1), corresponding to=1, ... ,4.
The corresponding values of;(w) are L£q(w)=w(1)
+w(3), Lo(w)=w(2)+w(2)=2w(2), Lz(w)=w(2)
+2w(1), and L4(w)=4w(1l). The general form is
d Li(w)=Z;w(j), wherej runs over theith partition. We
- —P,{rht) mention form(9) because it determines the beginning of the
dt annihilation process, but our interest below is the long-time
n—1 behavior, where we shall look for a scaling form gffr,t):

n—-1
2121 w(r,-)Pn<{ri},t>+2jZl > W(rj)Pnsa
= = rj:<rj

whereP;(rq,r,,t) is the probability of finding three succes-
sive particles AjA,A; with separationsA;A,=r; and
A,As;=r, and we have used the symmetBg(rq,r,,t)
=Pj3(r,,rq,t). The generalization of these equations is
straightforward. Lef,({r;},t) be the probability fom suc-
cessive particles A;A,---A,  with separations
AiAi 1=T1;, 1<isn—1. Then

y(r,t)=h(z)i with z

r
R "Ry’ 10
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where R(t) is the “reaction radius” defined by
+22 W(r' )Py a({rifr b). (3  tw(R(t))=1. Physically, in cases with steep radial decay of
r’ w(r), annihilation processes with greater tharR(t) at a
given time are unlikely. Our aim in Sec. lll is to fifqz), if
it exists, thus determining the asymptotic behavior of the
density and the correlation function, since from E8),

The right-hand side of Eq3) describes in order the follow-
ing: annihilationsA;— A, 1, reactions ofA; or A;,; with
someA; lying between them, and annihilation 8§ or A,

with particles outside the intervfA;,A,]. It can be shown y(r=o0,t) h(eo)
that Eq.(3) is solved by a factorized probability g(r—ot)=1= o0 = RO 0"

n—-1

Thus
F’n({ri},t):p(t)H1 y(rj,t), n=2 (4)
: . (=)
limp(t)= 25 (12)

as long as the density and the functipfr,t) satisfy Eqs(2) t=o (t)

and(3). In terms of these variables, Eq®) and(3) can be

expressed as and
q gr.p= 10D h@RO _h@
—giP(0=2p() 2 w(r) (D), (5) p()  R(Oh(=)  h()
SO
d
— —y(r,t)= H+2 ! "t —r',1).
gt/ (PO=WONED+2 2 W)y (=0 imatr.0=g.(2)= 12, 12
©®) = h(=)
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The determination ofh(z), which appears to be rate 0.1 .
dependent, is deferred to Sec. Ill, but we prepare for
the derivation by examining here a general constraint im- 0.075
plied by Eq.(6) and the initial conditions. On introducing the ’
generating functionsT'(x,t)==,x"y(r,t) and T ,(x,t) «g’
=3,x"w(r)y(r,t), Eq. (6) is equivalent to g 0.05
A
—d
Gt T =[14 20 (DT, 1), (13 0025
which can be integrated to yield 0
t
1+2F(x,t)=[1+21“(x,0)]exp(—ZJ Fw(x,t’)dt’). (14)
O T T T
14 1
From the initial conditions, ¥ 2T"'(x,0)=1+2pyx/(1—X), 12+ /O&\»\X (b) -
which can be written as expfX'w,), with w,={1—(1 )
—2po)"Y/2r. Thus Eq.(14) becomes _ 0s °
' = g6l 1
1+2F(x,t)=exp{22 xr(wr—w(r)f y(r,t’)dt’”, (15 '
T 0 04 f 1
which will be used below. 0.2 1

We should like to conclude this section by justifying the 0 ' : :
shielding approximation on the basis of numerical experi- 0 1 2 3
ments involving several hundred thousand events per case 7R
studied. Simulations of thed+A—0Q process were per-
formed forA particles on a line, as described in detai[ ). air correlation in theA+A—0 reaction withw(r)— L1/ré, com-
Both the exact and the shielded interaction were simulated ted by the Monte Carlo simulation of th i ‘
Slight differences in the density and the pair correlation forZﬁdetheyshisldir?n © wario simuiation of e exac processves

. . . . g approximatigdiamonds.
the exact and the shielded interactions quickly drop below
the level of statistical significance as the reaction radius h(1)
grows. Figure 1 compares the density and the correlation h(z)= —= for 1<z<2, (19
functions for the exact and the shielded dynamics with a z
dipolar interactiorw(r) =1/r® (we setw,=1 throughout the

FIG. 1. Comparison ofa) the densities an¢b) the asymptotic

where the constant of integratidn(1) will be determined

following). later. For 2<z<3, retaining the leading term in Eql7)
yields
[ll. STATIC ANNIHILATION
BY A TUNNELING INTERACTION d e fz_l Azt 2h%(1) ,
Setting unimportant constants to unity, we consider thed_z[Z (2)]=2h"(1)tint 1 Z(z—=72) (z-1) (20)
casew(r)=e~", for which R(t) =In(t) and look for the scal-
ing form of solution of Eq(6), and
t h(z) ' 16 h h(1) 1+2h(2)I 1 for 2=z<3, (21
=— = — =— — sz<

Y= T (16) (2)=—[1+2h(D)In(z-1)] for 2<2z=3, (21)
On replacing the summation over in Eq. (6) and changing where the constant of integration is fixed so thdi) is
variables toz' =r'/In(t), we have continuous atz=2. The solution for larger involves com-

plicated integrals and it is simpler to use the constraib®
to find h(1) andh(«). Relation(18) means that for large

' 17 t, y(r,t) =0 for r<R(t), in line with the phenomenological
interpretation ofR(t) as the minimal distance between sur-

h(z) +2]Zd2, h(z )h(’z—z )
0

d —_—
d—z[zh(z)]—tlnt iz

tZ

Thus, ast goes to infinity, viving particles. But this implies that #2T"(x,t)
=1+0(xRM) and thus all terms i’ for 1<r<R(t) on the
h(z)=0 for Osz=<1 (19 right-hand side of Eq(15) must vanish, i.e.,
andh(z) for largerz is defined piecemeal on intervals of unit ft Nt — T
length, the effective range of integration in Ed.7) being w(r) Oy(r,t Jdt'=w" for r<R(), 22

[1,z—1] instead of[ 0,z]. The integral does not contribute
for 1<z=<2 and which in turn leads to
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R() . RO 11 yr
2> w(r)f yrtdy =S T-172ee)
r=1 0

r=1 r

~y+In[2pR(1)] (23

for larget. In this equation,y=0.577 ... is Euler's con-
stant. Inserting Eq(23) into the density, we obtain

e 7

p(t)= mpw(t), (24

with
t
pw(t):exp(—z > w(r)f y(r,t’)dt’). (25)
r>R(t) 0

In expression(25), y(r,t")=p(t")g(r,t’)~p(t') under
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in agreement with Eq(10) and our definitiorR(t) =t¥*. On
inserting expressiof28) into Eq. (6) and dividing through-
out byt~1~ X one finds the time-independent equation for
h(z),

ah(2)
Za

d 3 z dx
d—z[zh(z)]— +2af0 Fh(x)h(z—x). (29

The solution can be written as

1
h(z)= %Z)exr{ - ?) , (30
where ¢(z) obeys the simpler equation
d «(2d
d—zqs(z):zaelfz fo X—i(h(x)h(z—x). (3D

the reasonable assumption that outside the reaction radius the _ .
correlation is of order 1, as in the initial state. SinceAn analytical solution of Egs(30) and (31) has not been

2r>ryW(r) =1, we obtain

t
pw(t)~eXp< —2/tfop(t')dt')~1

and the final result is
-

21In(t)’

limp(t)= (26)

t—o

which by comparison with Eq(11) gives directly h(e)
=e /2.

In order to determinén(1), we again turn to Eq(15),
which yields

y(r,t)=w,—w(r)foty(r,t’)dt’ for R(t)<r<2R(t).

For larger,y reduces toy(r,t)=w,=1/2r, i.e.,h(z)=1/2z
for 1<z=<2, in agreement with Eq(19), whenceh(1)
=1/2. On collecting these results and using B®) to com-
puteg.(z), we find from Eqs(18), (19), and(21) that

0, O=z=1
e?
—, 1<z=2
0x(2)= z (27)

e?’
7[1+ In(z—1)], 2sz=<3.

Results (26) and (27) are in complete agreement with
those obtained if3] by mapping the static annihilation prob-
lem onto a staggered annihilation model. We know from this
previous work that these expressions agree with Monte Carlg
simulations and can be used over a wide range of time. n

IV. STATIC ANNIHILATION
WITH A POWER-LAW INTERACTION

Consider now the case(r)=r"“. Let us look for solu-

tions of Eq.(6) of the scaling form

y(r,t)y=h(z)t" e, z=rt"te (29

found, but a numerical solution can be computed with the
help of the following observations. First, it will appear that
#(z) is of order 1 inz for z~0, and there is a factor

e 1% in Eq. (30), so one can use the approximation

h(z)=0 for O<z=<z,, (32
wherez, depends onv. In practicez,=(0.1)"* appears to
be a good choice since E@2) is then fulfilled to within
10~ “. The effective reaction radius, which gives the average
pair separation, is thugt/®. With this approximation, the
effective limits of the integral on the right-hand side of Eq.

(31) arezg<z<z—2z,. Hence

#(2o) oLz
z

#(2)=d(20), h(2)= for zg<z<2z,.

(33
Integrating Eq(31) we have

X—

z o 70d
$(2)= (20 + 2a f dx & f SHhWR-y). (34
2y

)

Thus ¢(2) in the range 2p<z<3z; is determined byh(z)
in the rangezy<z<2z,, as implied by Eq(33). This proce-
dure may be iterated to yiell(z) and ¢(z) for any z, once
#(zp) is known.

In order to find¢(zp), we observe that the largebehav-
ior of ¢(2), given by Eq.(31), is ¢(z)~z?, whereg is the
constant defined by

o dz
2af h(z) 7 =8. (35
0 z
physical grounds, we expect thg#= 1 in such a way that

h(z) reaches a finite valuk(). This is indeed implied by
constraint(15), which reads

t 1
w(r)f 'y(r,t')dt’=wr~5 for r<zpt'®, (36)
0

where we have used relatidB82) as in Sec. Ill. On writing
Eq. (36) in the long-time limit as
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FIG. 2. Convergence of the density of surviving particles to-
wards the asymptotic formill): The productR(t)p(t) in Monte
Carlo simulations is compared with the asymptdiessee the text
for «=6, 4, and 2 from top to bottom.

2rw(r)fxy(r,t)dt=1,
0

then using Eq.28), and changing the variable fromto
z=rt~ @ at fixedr, this expression read8=1. It is this
constraint that determineg(zy). This is done numerically,
and we further know that aa tends toe, we must have
¢(z5)=1/2 in order for Egs(33) and(19) to coincide.

In practice, we proceed as follows for givenandz,. We
choose a trial value o$(zy)~ 1/2, constructp(z) by itera-
tion up to somez= Nz, in the asymptotic regimeN ranges
from 8 to 10 fora ranging from 6 to 2 and adjust®(zp)
until B~1 [¢(zy) appears to vary weakly, from 0.5 to 0.44
asa varies from 6 to 2 Finally, we check the stability of the
resultingh(z) asz, is reduced and\ is increased at constant
Nzy=z.
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FIG. 3. Comparison of the asymptotic scaling form of the pair
correlation from the Monte Carlo simulation and from the shielding
approximation(smooth ling for «=6 (top) anda=2 (bottom).

indicating local ordering of surviving particles in the reac-
tions with exponential3] or 14 ° coupling, are, as expected,
less well defined or absent in the case 2.

V. CONCLUSION

Through Monte Carlo experiments we show that the
shielding approximation is accurately fulfilled by the annihi-
lation process. This approximation then closes the hierarchi-
cal equations, as in many other cases, like the trapping reac-
tion A+T—T with immobile reactants and trag$] or
ballistic annihilation in a one-dimensional flu[®]. In our
case, the long-time solution of the resulting evolution equa-
tions has a scaling form involving the reaction radius in the
expected way10] and, as is well known, does not follow the
mean-field regime. To the contrary, the evolution of the sur-
viving population toward an ordered sate is particualrly strik-
ing for the exponential interaction, for which the correlation
function can be predicted analytically. The local ordering is

We have investigated the physically interesting integemoticeable for multipolar interactions, especially=6, but

values ofa, 2<a<6, with the result()=0.195, 0.222,
0.242, 0.249, and 0.254. We recall from E@.1) that
p(t)~h(=)/tY«. Figure 2 illustrates this by comparing the
product p(t)t¥* from simulations with these predicted as-

decreases witlx, practically disappearing fot=2.

In conclusion, we would mention that this approach can
be applied to theA+B—0 reaction, where it justifies the
results obtained earlier with a staggered interaction model

ymptotes. Figure 3 shows satisfactory agreement betwedn1]. In higher dimensions, the shielding approximation may

the simulated and calculated correlation functignsscaled
units) for a=6. The agreement fax=2 is less satisfactory,

be replaced by a Kirkwood superposition approximation. As
shown in[12], this leads to a closed system that can be

as is the convergence of the analytical and simulated valuesolved numerically and appears to be in good agreement with
of the productp(t)t*® in Fig. 2 because of numerical diffi- the data at long times. The introduction of our techniques,
culties in both the estimation and the simulations. Howeverespecially the scaling forms, might lead to a more accurate or
we note that the reaction front and the peak following it,even an analytical solution for the exponential case.
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